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COMBINED LEAST SQUARES: THE GENERAL LEAST SQUARES 

ADJUSTMENT TECHNIQUE 

A common treatment of the least squares technique of estimation starts with simple linear 

mathematical models having observations (or measurements) as explicit functions of 

parameters with non-linear models developed as extensions.  This adjustment technique is 

generally described as adjustment of indirect observations (also called parametric least 

squares).  Cases where the mathematical models contain only measurements are usually 

treated separately and this technique is often described as adjustment of observations only 

(also called condition equations).  Both techniques are of course particular cases of a general 

adjustment model, sometimes called Combined Least Squares, the solution of which is set out 

below.  The general adjustment technique also assumes that the parameters, if any, can be 

treated as "observables", i.e., they have an a priori covariance matrix.  This concept allows the 

general technique to be adapted to sequential processing of data where parameters are updated 

by the addition of new observations. 

 

In general, least squares solutions require iteration, since a non-linear model is assumed.  The 

iterative process is explained below.  In addition, a proper treatment of covariance 

propagation is presented and cofactor matrices given for all the computed and derived 

quantities in the adjustment process.  Finally, the particular cases of the general least squares 

technique are described. 

 

The Combined Least Squares Adjustment Model 

Consider the following set of non-linear equations representing the mathematical model in an 

adjustment 

  (1) F ,l x 0d i =

where l is a vector of n observations and x is a vector of u parameters; l  and  referring to 

estimates derived from the least squares process such that 

x

 l l v= +  (2) 

 x x x= + δ  (3) 
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where v is a vector of residuals or small corrections and δx  is a vector of small corrections.  

As is usual, the independent observations l have an a priori diagonal cofactor matrix Q  

containing estimates of the variances of the observations, and in this general adjustment, the 

parameters x are treated as "observables" with a full a priori cofactor matrix Q .  The 

diagonal elements of Q  contain estimates of variances of the parameters and the off-

diagonal elements contain estimates of the covariances between parameters.  Cofactor 

matrices Q  and Q  are related to the covariance matrices 

ll

xx

xx

ll xx Σ ll  and Σ xx  by the variance factor 

σ 0
2  

 Σ ll ll= σ 0
2 Q  (4) 

 Σ xx xx= σ 0
2 Q  (5) 

Also, weight matrices W are useful and are defined, in general, as the inverse of the cofactor 

matrices 

 W Q= −1 (6) 

and covariance, cofactor and weight matrices are all symmetric, hence 

 where the superscript T denotes the transpose of the matrix. Q Q WT = and WT =

W

 

Note also, that in this development where Q and W are written without subscripts they refer 

to the observations, i.e.,  Q Q Wll ll= =and  

Linearizing (1) using Taylor's theorem and ignoring 2nd and higher order terms, gives 

 F F F F
l x l x

, ,
, ,

l x l x
l

l l
x

x x 0d i a f d i b g= +
∂
∂

− +
∂
∂

− =  (7) 

and with v l  and l= − δx x= − x from (2) and (3), we may write the linearized model in 

symbolic form as 

 Av B x f+ =δ  (8) 

Equation (8) represents a system of m equations that will be used to estimate the u parameters 

from n observations.  It is assumed that this is a redundant system where 

  (9) n m≥ ≥ u

and 
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 r m u= −  (10) 

is the redundancy or degrees of freedom. 

 

In equation (8) the coefficient matrices A and B are design matrices containing partial 

derivatives of the function evaluated using the observations l and the "observed" parameters 

x. 

 A
lm n

l x

F
,

,

=
∂
∂

 (11) 

 B
xm u

l x

F
,

,

=
∂
∂

 (12) 

The vector f contains m numeric terms calculated from the functional model using l and x. 

 f lm F, ,1 x= − a fm r  (13) 

 

The Least Squares Solution of the Combined Model 

The least squares solution of (8), i.e., the solution which makes the sums of the squares of the 

weighted residuals a minimum, is obtained by minimizing the scalar function ϕ  

 ϕ δ δ δ= + − + −v W v x W x k Av B x fT T
xx

T2 a f (14) 

where k is a vector of m Lagrange multipliers.  ϕ  is a minimum when its derivatives with 

respect to v and δx  are equated to zero, i.e. 

 

∂
∂

= −

∂
∂

= −

=

=

ϕ

ϕ
δ

δ

v
v W k A 0

x
x W k B 0

2 2

2 2

T T

T
xx

T T

T

 

These equations can be simplified by dividing both sides by two, transposing and changing 

signs to give 

 − + =Wv A k 0T  (15) 

 − + =W x B k 0xx
Tδ  (16) 

Equations (15) and (16) can be combined with (8) and arranged in matrix form as 
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−

−

L

N
MMM

O

Q
PPP

L

N
MMM

O

Q
PPP
=
L

N
MMM

O

Q
PPP

W A 0
A 0 B
0 B W

v
k
x

0
f
0

T

T
xx δ

 (17) 

 

Equation (17) can be solved by the following reduction process given by Cross (1992, pp. 22-

23).  Consider the partitioned matrix equation P y u=  given as 

 
P P
P P

y
y

u
u

11 12

21 22

1

2

1

2

L
NM

O
QP
L
NM
O
QP =
L
NM
O
QP  (18) 

which can be expanded to give 

 P y P y u11 1 12 2 1+ =  

or 

 y P u P y1 11
1

1 12 2= −− b g (19) 

Eliminating y  by substituting 1 (19) into (18) gives 

 
P P
P P

P u P y
y

u
u

11 12

21 22

11
1

1 12 2

2

1

2

L
NM

O
QP

−L
NM

O
QP
=
L
NM
O
QP

− b g  

Expanding the matrix equation gives 

 
P P u P y P y u

P P u P P P y P y u
21 11

1
1 12 2 22 2

21 11
1

1 21 11
1

12 2 22 2 2

2
−

− −

− + =

− +

b g
=

 

and an expression for y2  is given by 

  (20) P P P P y u P P u22 21 11
1

12 2 2 21 11
1

1− = −−c h −

Now partitioning (17) in the same way as (18) 

 
−

−

L

N
MMM

O

Q
PPP

L

N
MMM

O

Q
PPP
=
L

N
MMM

O

Q
PPP

W A 0
A 0 B
0 B W

v
k
x

0
f
0

T

T
xx δ

 (21) 

then eliminating v by applying (20) gives 

 
0 B

B W
A
0

W A 0 k
x

f
0

A
0

W 0
T

xx

T

−
L
NM

O
QP −
L
NM
O
QP

L
NM

O
QP
L
NM
O
QP =
L
NM
O
QP −
L
NM
O
QP
−− −1 1

δ
 

Remembering that Q W= −1 the equation can be simplified as 
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AQA B

B W
k
x

f
0

T

T
xx−

L
NM

O
QP
L
NM
O
QP =
L
NM
O
QPδ
 (22) 

Again, applying (20) to the partitioned equation (22) gives 

 − − = −
− −

W B AQA B x 0 B AQAxx
T T T Tc he j c h1 1

δ f  

and re-arranging gives the normal equations 

 B AQA B W x B AQA fT T
xx

T Tc he j c h− −
+ =

1
δ

1

l

 (23) 

Mikhail (1976, p. 114) simplifies (23) by introducing equivalent observations l  where e

 l Ae =  (24) 

Applying the matrix rule for cofactor propagation (Mikhail 1976, pp. 76-79) gives the 

cofactor matrix of the equivalent observations as 

 Q AQAe
T=  (25) 

With the usual relationship between weight matrices and cofactor matrices, see (6), we may 

write 

 W Q AQAe e
T= =− −1 1c h  (26) 

Using (26) in (23) gives the normal equations as 

  (27) B W B W x B W fT
e xx

T
e+ =c hδ

With the auxiliaries N and t 

 N B W B= T
e  (28) 

 t B W f= T
e  (29) 

the vector of corrections δx  is given by 

 δx N W= + t−
xxb g 1  (30) 

The vector of Lagrange multipliers k are obtained from (22) by applying (19) to give 

 k AQA f B x W f B x= − = −
−T

ec h a f a1
δ fδ  (31) 

and the vector of residuals v is obtained from (21) as 
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 − + =Wv A k 0T  

giving 

 v W A k QA k= =−1 T T

x

 (32) 

 

The Iterative Process of Solution 

Remembering that x x= + δ , see (3), where x is the vector of a priori estimates of the 

parameters, δx  is a vector of corrections and  is the least squares estimate of the parameters. x

 

At the beginning of the iterative solution, it can be assumed that  equals the a priori 

estimates x  and a set of corrections 

x

1 δx1 computed.  These are added to x  to give an updated 

set x .  A and B are recalculated and a new weight matrix W  computed by cofactor 

propagation.  The corrections are computed again, and the whole process cycles through until 

the corrections reach some predetermined value, which terminates the process. 

1

2 xx

 x xn n+ xn= +1 δ  (33) 

 

Derivation of Cofactor Matrices 

In this section, the cofactor matrices of the vectors  will be derived.  The law of 

propagation of variances (or cofactors) will be used and is defined as follows (Mikhail 1976, 

pp. 76-89). 

, ,x x v lδ and

 

Given a functional relationship 

 z x= Fa f (34) 

between two random vectors z and x and the variance-covariance matrix Σ , the variance-

covariance matrix of z is given by 

xx

 Σ Σzz zx xx zx
T= J J  (35) 

where J  is a matrix of partial derivatives zx
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 J
xzx

n

n

m m m

n

F

z
x

z
x

z
x

z
x

z
x

z
x

z
x

z
x

z
x

=
∂
∂

=

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

L

N

MMMMMMMM

O

Q

PPPPPPPP

1

1

1

2

1

2

1

2

2

2

1 2

 

Using the relationship between variance-covariance matrices and cofactor matrices, see (5), 

the law of cofactor propagation may be obtained from (35), as 

 Q J Q Jzz zx xx zx
T=  (36) 

For a function z containing two independent random variables x and y with cofactor matrices 

 and Q  Qxx yy

 z x y= F ,a f  (37) 

the law of propagation of variances gives the cofactor matrix Q  as zz

 Q J Q J J Q Jzz zx xx zx
T

zy yy zy
T= +  (38) 

 

Cofactor Matrix for  x

 

According to equations (33) and (30) with (29) the least squares estimate  is x

 x x N W B W= + + f−
xx

T
eb g 1  (39) 

and  is a function of the a priori parameters x (the "observables") and the observations l 

since the vector of numeric terms f contains functions of both.  Applying the law of 

propagation of cofactors gives 

x

 Q x
x

Q x
x

x
l

Q x
lxx xx

T T

=
∂
∂
F
HG
I
KJ

∂
∂
F
HG
I
KJ +

∂
∂
F
HG
I
KJ

∂
∂
F
HG
I
KJ  (40) 

The partial derivatives of (39) are 

 ∂
∂

= + +
∂
∂

−x
x

I N W B W f
xxx

T
eb g 1  (41) 

 ∂
∂

= +
∂
∂

−x
l

N W B W f
lxx

T
eb g 1  (42) 
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From (13), f  the partial derivatives x= −F ,a lf ∂
∂

f
x

 and ∂
∂
f
l

, are the design matrices A and B 

given by (11) and (12) 

 ∂
∂

= −
f
x

B (43) 

 ∂
∂

= −
f
l

A (44) 

Substituting (43) and (44) into (41) and (42) with the auxiliary N B W B= T
e  gives 

 
∂
∂

= − +

= − +

−

−

x
x

I N W B W

I N W N

xx
T

e

xx

b g
b g

1

1

B
 (45) 

 ∂
∂

= − + −x
l

N W B W Axx
T

eb g 1  (46) 

Substituting (45) and (46) into (40) gives 

  (47) 
Q I N W N Q I N W N

N W B W A Q N W B W A

xx xx xx xx

T

xx
T

e xx
T

e

T

= − + − +

+ − + − +

− −

− −

b go t b go t
b go t b go t

1 1

1 1

With the auxiliary  (48) N N W•
= + xxb g

and noting that the matrices I N N  are all symmetric, W, ,
•

and xx (47) may be simplified as 

 Q I N N Q I N N N B W A Q A W B Nxx xx
T

e
T

e= −FHG
I
KJ −FHG

I
KJ +
F
HG

I
KJ
F
HG

I
KJ

• − • − • − • −1 1 1 1  

Remembering that Q AQA W Qe
T

e e= = −and 1 

 Q Q Q N N N NQ N NQ N N N N Nxx xx xx xx xx= − − + +
• − • − • − • − • − • −1 1 1 1 1 1 (49) 

The last two terms of (49) can be simplified as follows 
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N NQ N N N N N N NQ N N W N

N NQ N W N

N NQ N N

N NQ

• − • − • − • − • − • − • −

• − • −

• − • • −

• −

+ = +F
HG

I
KJ

= +

=

=

1 1 1 1 1 1

1 1

1 1

1

xx xx xx

xx xx

xx

1

xx

b g  

and substituting this result into (49) gives 

  (50) 
Q Q Q N N N NQ N NQ

Q Q N N

xx xx xx xx xx

xx xx

= − − +

= −

• − • − • −

• −

1 1 1

1

Further simplification gives 

 

Q Q I N N

Q N N N

Q N W N N

Q W N

xx xx

xx

xx xx

xx xx

= −FHG
I
KJ

= −FH IK
= + −

=

• −

• • −

• −

• −

1

1

1

1

b g
 (51) 

and since Q W  the cofactor matrix of the least squares estimates  is Ixx xx = x

  (52) Q N N Wxx xx= = +
• − −1 1b g

 

 

Cofactor Matrix for l  

 

Beginning with the final adjusted observations given by (2) 

 l l v= +  (53) 

and using (32) and (31) we have 

  

l l QA k

l QA W f B x

l QA W f QA W B x

= +

= + −

= + −

T

T
e

T
e

T
e

δ

δ

a f
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Substituting the expression for δx  given by (30) with the auxiliaries t and N  given by 
•

(29) 

and (48) respectively gives 

 

l l QA W f QA W B N W t

l QA W f QA W B N W B W f

l QA W f QA W B N B W f

= + − +

= + − +

= + −

−

−

• −

T
e

T
e xx

T
e

T
e xx

T
e

T
e

T
e

T
e

b g
b g

1

1

1

 (54) 

and l  is function of the observables x and the observations l since f x l= −F ,a f .  Applying the 

law of propagation of variances to (54) gives 

 Q l
x

Q l
x

l
l

Q l
ll l xx

T T

=
∂
∂
F
HG
I
KJ

∂
∂
F
HG
I
KJ +

∂
∂
F
HG
I
KJ

∂
∂
F
HG
I
KJ  (55) 

and the partial derivatives are obtained from (54) as 

 ∂
∂

=
∂
∂

−
∂
∂

• −l
x

Q A W f
x

Q A W B N B W f
x

T
e

T
e

T
e

1  

 ∂
∂

= +
∂
∂

−
∂
∂

• −l
l

I Q A W f
l

Q A W B N B W f
l

T
e

T
e

T
e

1  

 

With ∂
∂

= −
f
x

B and ∂
∂

= −
f
l

A, and with the auxiliary N B W B= T
e  the partial derivatives 

become 

 
∂
∂

= −

= −

• −

• −

l
x

Q A W B N B W Q A W B

Q A W B N N Q A W B

T
e

T
e

T
e

T
e

T
e

1

1

 (56) 

 ∂
∂

= + −
• −l

l
I Q A W B N B W A Q A W AT

e
T

e
T

e
1  (57) 

Substituting (56) and (57) into (55) gives 

  (58) Q
l l
= +1  term 2 termst ndm r m r

where 
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1 termstm r = −

− +

• − • − • −

• −

QA W B N NQ N N B W AQ QA W B N NQ B W AQ

QA W BQ N N B W AQ QA W BQ B W AQ

T
e xx

T
e

T
e xx

T
e

T
e xx

T
e

T
e xx

T
e

1 1 1

1

 

  

2 termndm r = + −

+

+

− −

− +

• −

• −

• − • −

• −

• −

Q QA W B N B W AQ QA W AQ

QA W B N B W AQ

QA W B N B W AQA W B N B W AQ

QA W B N B W AQA W AQ QA W AQ

QA W AQA W B N B W AQ QA W AQA W AQ

T
e

T
e

T
e

T
e

T
e

T
e

T
e

T
e

T
e

T
e

T
e

T
e

T
e

T
e

T
e

T
e

T
e

T
e

1

1

1 1

1

1

The 1st term can be simplified as 

 
1 termstm r = − − +F

HG
I
KJ

= −F
HG

I
KJ − +F

HG
I
KJ

• − • − • − • −

• − • − • −

QA W B N NQ N N N NQ Q N N Q B W AQ

QA W B N N Q N N Q Q N N Q B W AQ

T
e xx xx xx xx

T
e

T
e xx xx xx xx

T
e

1 1 1 1

1 1 1

 

but we know from (50) that Q Q Q N Nxx xx xx= −
• −1, and from (52) that Q Nxx =

• −1 so 

 

1 termstm r = −F
HG

I
KJ

= −FHG
I
KJ

= −FHG
I
KJ

• −

• − • − • −

• − • −

QA W B Q N NQ B W AQ

QA W B N N N N B W AQ

QA W B N I N N B W AQ

T
e xx xx

T
e

T
e

T
e

T
e

T
e

1

1 1 1

1 1

 

The term in brackets has been simplified in (51) as W N  which gives the 1st term as xx
• −1

  (59) 1 termstm r = • − • −QA W B N W N B W AQT
e xx

T
e

1 1

The 2nd term of (58) can be simplified by remembering that AQA Q WT
e e= = −1 so that after 

some cancellation of terms we have 

  (60) 2 termndm r = + −
• − • −Q QA W B N N N B W AQ QA W AQT

e
T

e
T

e
1 1

Substituting (59) and (60) into (58) gives the cofactor matrix of the adjusted observations as 

 Q Q QA W B N W B W AQ QA W A
l l

T
e xx

T
e

T
e= + + − Q−b g 1  (61) 
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Cofactor Matrix for δx  

 

From (30) and (29) 

 
δx N W B W

N B W f

= +

=

f−

• −

xx
T

e

T
e

b g 1

1
 (62) 

and applying the law of propagation of variances gives 

 Q N B W Q N B Wx xδ δ = FHG
I
KJ
F
HG

I
KJ

• − • −1 1T
e f f

T
e

T

 (63) 

The cofactor matrix Q  is obtained from f xf f l= −F ,a f  as 

 

Q f
x

Q f
x

f
l

Q f
l

B Q B A Q A

BQ B AQA

BQ B Q

f f xx

T T

xx
T

xx
T T

xx
T

e

=
∂
∂

T

F
HG
I
KJ

∂
∂
F
HG
I
KJ +

∂
∂
F
HG
I
KJ

∂
∂
F
HG
I
KJ

= − − + − −

= +

= +

a f a f a f a f  (64) 

Substituting (64) into (63) and simplifying gives 

 Q N W NQ N N W N W N N Wx xδ δ = + + + + +− − − −
xx xx xx xx xxb g b g b g b g1 1 1 1

1

1

 (65) 

Equation (65) can be simplified further as 

 

Q N NQ N N N N N

N NQ N N W N

N NQ N W N

N NQ N N

x xδ δ = +

= +F
HG

I
KJ

= +

=

• − • − • − • −

• − • − • −

• − • −

• − • • −

1 1 1

1 1

1 1

1 1

xx

xx xx

xx xx

xx

b g
 

or 

  (66) Q N NQ N W NQx xδ δ = = +
• − −1 1

xx xx xxb g
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Cofactor Matrix for v 

 

From (32), (31) and (30) we may write the following 

  

v QA k

QA W f B x

QA W f QA W B x

QA W f QA W B N W t

=

= −

= −

= − + −

T

T
e

T
e

T
e

T
e

T
e x

δ

δ

a f

b g 1
x

f

l

and with (29) and the auxiliary N N  W• − −= +1 1
xxb g

  (67) v QA W f QA W B N B W= −
• −T

e
T

e
T

e
1

v is a function of the observables x and the observations l since f x= −F ,a f  and applying the 

law of propagation of variances gives 

 Q v
x

Q v
x

v
l

Q v
lvv xx

T T

=
∂
∂
F
HG
I
KJ

∂
∂
F
HG
I
KJ +

∂
∂
F
HG
I
KJ

∂
∂
F
HG
I
KJ  (68) 

The partial derivatives of (67) are 

 ∂
∂

=
∂
∂

−
∂
∂

• −v
x

Q A W f
x

Q A W B N B W f
x

T
e

T
e

T
e

1  

 ∂
∂

=
∂
∂

−
∂
∂

• −v
l

Q A W f
l

Q A W B N B W f
l

T
e

T
e

T
e

1  

With ∂
∂

= −
f
x

B and ∂
∂

= −
f
l

A, and with the auxiliary N B W B= T
e  the partial derivatives 

become 

 ∂
∂

= −
• −v

x
Q A W B N N Q A W BT

e
T

e
1  (69) 

 ∂
∂

= −
• −v

l
Q A W B N B W A Q A W AT

e
T

e
T

e
1  (70) 

Substituting (69) and (70) into (68) gives 

  (71) Qvv = +1 2st ndterm termm r m r
where 
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1 termstm r = −

− +

• − • − • −

• −

QA W B N NQ N N B W AQ QA W B N NQ B W AQ

QA W BQ N N B W AQ QA W BQ B W AQ

T
e xx

T
e

T
e xx

T
e

T
e xx

T
e

T
e xx

T
e

1 1 1

1

 

  

2 termndm r =
−

−

+

• − • −

• −

• −

QA W B N B W AQA W B N B W AQ

QA W B N B W AQA W AQ

QA W AQA W B N B W AQ

QA W AQA W AQ

T
e

T
e

T
e

T
e

T
e

T
e

T
e

T
e

T
e

T
e

T
e

T
e

1 1

1

1

The 1st term above is identical to the 1st term of (58) which simplifies to (59) as 

  (72) 1 termstm r = • − • −QA W B N W N B W AQT
e xx

T
e

1 1

The 2nd term above can be simplified by remembering that AQA Q WT
e e= = −1 so that after 

some manipulation we have 

 
2 termndm r = −F

HG
I
KJ

− +

• − • − • −

• −

QA W B N N N N B W AQ

QA W B N B W AQ QA W AQ

T
e

T
e

T
e

T
e

T
e

1 1 1

1

 

The term in brackets can be expressed as 

 

N N N N N N N N

N N N W N

N W N

• − • − • − • − • • −

• − • −

• − • −

− = −FH IK
= − +

= −

1 1 1 1 1

1 1

1 1

xx

xx

b gc h  

and the 2nd term becomes 

  (73) 
2 termndm r = −

− +

• − • −

• −

QA W B N W N B W AQ

QA W B N B W AQ QA W AQ

T
e xx

T
e

T
e

T
e

T
e

1 1

1

Substituting (72) and (73) into (71) gives the cofactor matrix of the residuals v as 

 Q QA W B N W B W AQ QA W AQvv
T

e xx
T

e
T

e= − + +−b g 1  (74) 

and by inspection of (64) and (74) 

 Q Q Qvv ll
= −  (75) 
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Covariance Matrix Σ  xx

 

 Σ xx xx= σ 0
2 Q  (76) 

The estimated variance factor is 

 σ δ δ
0
2 =

+v Wv x W xT T
xx

r
 (77) 

and the degrees of freedom r are 

 r m u ux= − +  (78) 

where m is the number of equations used to estimate the u parameters from n observations.  u  

is the number of weighted parameters.  [Equation 

x

(78) is given by Krakiwsky (1975, p.17, eqn 

2-62) who notes that it is an approximation only and directs the reader to Bossler (1972) for a 

complete and rigorous treatment.] 

 

 

Generation of the Standard Least Squares Cases 

 

Combined Case with Weighted Parameters A B W W 0, , , xx ≠b g 
 

The general case of a non-linear implicit model with weighted parameters treated as 

observables is known as the Combined Case with Weighted Parameters.  It has a solution 

given by the following equations (30), (28), (29), (26), (3), (31), (32), (2), (65), (52), (74), 

(61), (64), (77) and (78). 

  (79) δx N W= + −
xxb g 1t

B

f

 with N B  (80) W= T
e

  (81) t B W= T
e

 W Q AQAe e
T= =− −1 1c h  (82) 
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 x x= + xδ  (83) 

 k W f B x= −e δa f

T

v

 (84) 

  (85) v W A k QA k= =−1 T

  (86) l l= +

 
Q N W NQ N N W N W N N W

N W NQ

x xδ δ = + + + + +

= +

− − − −

−

xx xx xx xx xx

xx xx

b g b g b g b g
b g

1 1 1

1

1

 (87) 

  (88) Q N Wxx xx= + −b g 1

 Q QA W AQ QA W B N W B W AQvv
T

e
T

e xx
T

e= − + −b g 1  (89) 

 Q Q QA W B N W B W AQ QA W AQ
l l

T
e xx

T
e

T
e= + + −−b g 1  (90) 

  (91) Q BQ B Qf f xx
T

e= +

 σ δ δ
0
2 =

+v Wv x W xT T
xx

r
 (92) 

 r m u ux= − +  (93) 

 Σδ δ δ δσx x x xQ= 0
2  (94) 

 Σ xx xx= σ 0
2 Q  (95) 

 Σ vv vv= σ 0
2 Q  (96) 

 Σ
ll ll
= σ 0

2 Q  (97) 

 Σ f f f f= σ 0
2 Q  (98) 
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Combined Case  A B W W 0, , , xx =b g
 

The Combined Case is a non-linear implicit mathematical model with no weights on the 

parameters.  The set of equations for the solution is deduced from the Combined Case with 

Weighted Parameters by considering that if there are no weights then W 0 Qxx xx= 0=and .  

This implies that x is a constant vector (denoted by x ) of approximate values of the 

parameters, and partial derivatives with respect to x  are undefined.  Substituting these two 

null matrices and the constant vector x

0

0

x= 0  into equations (1) to (78) gives the following 

results. 

 δx N= −1t

l0 h

 (99) 

 with N B  (100) W B= T
e

  (101) t B W f= T
e

0

  (102) f x0 = −F ,c

 W Q AQAe e
T= =− −1 1c h

x

 (103) 

 x x= +0 δ  (104) 

  (105) k W f B x= −e
0 δc h

T

v

Q

  (106) v W A k QA k= =−1 T

  (107) l l= +

  (108) Q Q Nx xδ δ = = −
xx

1

 Q QA W AQ QA W BN B W Avv
T

e
T

e
T

e= − −1  (109) 

 Q Q QA W B N B W AQ QA W AQ
l l

T
e

T
e

T
e= + −−1  (110) 

  (111) Q
f f e0 0 = Q
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 σ 0
2 =

v WvT

r
 (112) 

 r m u= −  (113) 

 Σ Σxx xx= =δ δ σx x Q0
2  (114) 

 Σ vv vv= σ 0
2 Q  (115) 

 Σ
ll ll
= σ 0

2 Q  (116) 

 Σ
f f f f0 0 0 00

2= σ Q  (117) 

 

 

Parametric Case A I B W W 0= =, , , xxb g 
 

The Parametric Case is a mathematical model with the observations l explicitly expressed by 

some non-linear function of the parameters x only.  This implies that the design matrix A is 

equal to the identity matrix I.  Setting A I=  in the Combined Case (with no weights) leads to 

the following equations. 

 δx N= −1t

l0 h

x

 (118) 

 with N B  (119) W B= T
e

  (120) t B W f= T
e

0

  (121) f x0 = −F ,c

 x x= +0 δ  (122) 

  (123) k W f B x= −0 δc h

x v W k f B= = −−1 0 δ  (124) 

  (125) l l= + v
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  (126) Q Q Nx xδ δ = = −
xx

1

  (127) Q Q BN Bvv
T= − −1

 Q B N B
l l

T= −1  (128) 

  (129) Q
f f0 0 = Q

 σ 0
2 =

v WvT

r
 (130) 

 r n u= −  (131) 

 Σ Σxx xx= =δ δ σx x Q0
2  (132) 

 Σ vv vv= σ 0
2 Q  (133) 

 Σ
ll ll
= σ 0

2 Q  (134) 

 Σ
f f f f0 0 0 00

2= σ Q  (135) 

 

 

Condition Case A B 0 W W 0, , ,= =xxb g 
 

The Condition Case is characterized by a non-linear model consisting of observations only. 

Setting B  in the Combined Case (with no weights) leads to the following equations. 0=

 

 k W f= e  (136) 

 with W Q AQAe e
T= =− −1 1c h  (137) 

  (138) f = −Fa fl
T  (139) v W A k QA k= =−1 T
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  (140) l l= + v

Q

Q

  (141) Q QA W Avv
T

e=

  (142) Q Q QA W A
l l

T
e= −

 σ 0
2 =

v WvT

r
 (143) 

 r m=  (144) 

 Σ vv vv= σ 0
2 Q  (145) 

 Σ
ll ll
= σ 0

2 Q  (146) 
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